Characterizing graphs with fully positive semidefinite Q-matrices
نویسندگان
چکیده
For $q\in\mathbb{R}$, the $Q$-matrix $Q=Q_q$ of a connected simple graph $G=(V,E)$ is $Q_q=(q^{\partial(x,y)})_{x,y\in V}$, where $\partial$ denotes path-length distance. Describing set $\pi(G)$ consisting those $q\in \mathbb{R}$ for which $Q_q$ positive semidefinite fundamental in asymptotic spectral analysis graphs from viewpoint quantum probability theory. Assume that $G$ has at least two vertices. Then easily seen to be nonempty closed subset interval $[-1,1]$. In this note, we show $\pi(G)=[-1,1]$ if and only isometrically embeddable into hypercube (infinite-dimensional infinite) bipartite does not possess certain five-vertex configurations, an example induced $K_{2,3}$.
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملMatrices with High Completely Positive Semidefinite Rank
A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M , and it is an open question whether there exists an upper bound on this number as a function of the matrix size. We show that if such an upper bound exists, it has to be a...
متن کاملsingular value inequalities for positive semidefinite matrices
in this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl. 308 (2000) 203-211] and [linear algebra appl. 428 (2008) 2177-2191].
متن کاملSemidefinite Programming in the Space of Partial Positive Semidefinite Matrices
We build upon the work of Fukuda et al. [SIAM J. Optim., 11 (2001), pp. 647–674] and Nakata et al. [Math. Program., 95 (2003), pp. 303–327], in which the theory of partial positive semidefinite matrices was applied to the semidefinite programming (SDP) problem as a technique for exploiting sparsity in the data. In contrast to their work, which improved an existing algorithm based on a standard ...
متن کاملSingular Value Inequalities for Positive Semidefinite Matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2023
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2023.04.018